Inhibition of Phenylpropanoid Biosynthesis in Artemisia annua L.: A Novel Approach to Reduce Oxidative Browning in Plant Tissue Culture

نویسندگان

  • Andrew Maxwell Phineas Jones
  • Praveen Kumar Saxena
چکیده

Oxidative browning is a common and often severe problem in plant tissue culture systems caused by the accumulation and oxidation of phenolic compounds. The current study was conducted to investigate a novel preventative approach to address this problem by inhibiting the activity of the phenylalanine ammonia lyase enzyme (PAL), thereby reducing the biosynthesis of phenolic compounds. This was accomplished by incorporating 2-aminoindane-2-phosphonic acid (AIP), a competitive PAL inhibitor, into culture media of Artemisia annua as a model system. Addition of AIP into culture media resulted in significant reductions in visual tissue browning, a reduction in total phenol content, as well as absorbance and autoflourescence of tissue extracts. Reduced tissue browning was accompanied with a significant increase in growth on cytokinin based medium. Microscopic observations demonstrated that phenolic compounds accumulated in discrete cells and that these cells were more prevalent in brown tissue. These cells were highly plasmolyzed and often ruptured during examination, demonstrating a mechanism in which phenolics are released into media in this system. These data indicate that inhibiting phenylpropanoid biosynthesis with AIP is an effective approach to reduce tissue browning in A. annua. Additional experiments with Ulmus americana and Acer saccharum indicate this approach is effective in many species and it could have a wide application in systems where oxidative browning restricts the development of biotechnologies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua

Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption t...

متن کامل

AaEIN3 Mediates the Downregulation of Artemisinin Biosynthesis by Ethylene Signaling Through Promoting Leaf Senescence in Artemisia annua

Citation: Tang Y, Li L, Yan T, Fu X, Shi P, Shen Q, Sun X and Tang K (2018) AaEIN3 Mediates the Downregulation of Artemisinin Biosynthesis by Ethylene Signaling Through Promoting Leaf Senescence in Artemisia annua. Front. Plant Sci. 9:413. doi: 10.3389/fpls.2018.00413 AaEIN3 Mediates the Downregulation of Artemisinin Biosynthesis by Ethylene Signaling Through Promoting Leaf Senescence in Artemi...

متن کامل

Reproductive development modulates gene expression and metabolite levels with possible feedback inhibition of artemisinin in Artemisia annua.

The relationship between the transition to budding and flowering in Artemisia annua and the production of the antimalarial sesquiterpene, artemisinin (AN), the dynamics of artemisinic metabolite changes, AN-related transcriptional changes, and plant and trichome developmental changes were measured. Maximum production of AN occurs during full flower stage within floral tissues, but that changes ...

متن کامل

Effect of plant population density on growth and yield of Artemisia (Artemisia annua L.)

A field experiment was conducted at wondo genet Agriculture research center under irrigated condition to determine the effect of intra and inter-row spacing on growth and yield of Artemisia (Artemisia annua L.) during the two successive seasons of 2013 and 2014. Factorial combinations of four intra-rows (40, 60, 80, 100 cm) and four inter-row plant spacing’s (60, 80, 100, 120 cm) were laid out ...

متن کامل

Effects of CuSO4 and AgNO3 on artemisinin and phenolic compound in shoot cultures of Artemisia annua L.

In the present study, the effect of exogenous silver nitrate (Ag+) and copper sulfate (Cu2+) applications on production of artemisinin and phenolic compounds as well as oxidative stress in the shoot cultures of Artemisia annua was investigated. A significant decrease in the shoot biomass and the total chlorophyll was observed in the shoots exposed to increased Ag concentration. Additionally, a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013